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Abstract

This paper investigates the steady ¯ow and heat transfer between two concentric spheres with the inner one
rotating and the outer one stationary for the gap width of s=0.18. A continuation method is applied to study the

bifurcation structure of the discretized governing equations. The resulting Jacobian matrix along with a test function
approach is used to locate the bifurcation points. A bifurcation diagram of the ¯ow is constructed for Re< 1200.
Seven steady ¯ow modes are predicted. Linear stability analysis is used to determine the stability of each ¯ow mode.

Temperature distribution and heat transfer rate of each ¯ow mode are also computed and analyzed. # 2000
Elsevier Science Ltd. All rights reserved.

1. Introduction

Spherical Taylor±Couette ¯ow has been an import-

ant research topic for many years, and has been stu-

died by many researchers. Wimmer [1] showed in his

experiments that the ¯ow modes could be produced by

di�erent acceleration histories of the inner sphere.

Bartels [2] solved the unsteady axisymmetric Navier±

Stokes equations in stream-function vorticity formu-

lation by means of a ®nite-di�erence approximation.

He used a quadrant annulus (0 R y R p/2) as a com-

putational domain and imposed equatorially symmetric

boundary conditions. He could not obtain 1-vortex

¯ow without arbitrary disturbances near the equator.

Marcus and Tuckerman [3] used the same formulation

with the equations solved by a pseudospectral method

for full domain (0 R y R p ). Three steady ¯ow modes

with 0-, 1- and 2- Taylor vortices are found to be sym-

metric with respect to the equator. They also examined

the transitions of the three ¯ow modes. Schrauf [4]

used the continuation method of Keller [5] to investi-

gate how the stability of spherical Couette ¯ow

depends on the gap size. BuÈ hler [6] presented a com-

prehensive investigation of a spherical gap ¯ow,

s=0.154, with an initial value code based on an ex-

plicit ®nite di�erence method. He discovered for the

®rst time that, within the non-existence range of the

symmetric 1-vortex mode, a similar 1-vortex stable

mode asymmetric with respect to the equatorial plane

could exist. Bar-Yoseph et al. [7] considered both con-

centric and eccentric spherical gaps for two di�erent

radii ratios of a medium size gap by means of a ®nite-

element method. Mamun and Tuckerman [8] adopted

a pseudospectral time-stepping formulation to study

the bifurcation-theoretic genesis of BuÈ hler's asym-

metric states. They found that the asymmetric branch

originates from pitchfork bifurcation; its stabilization

occurs via a subsequent subcritical Hopf bifurcation.

Yang [9] used the ®nite-di�erence method with ®c-

titious symmetric boundary conditions to ®nd all poss-

ible stable steady axisymmetric ¯ow modes. Both sym-

metric and asymmetric solutions can be predicted in a

deterministic way.
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Heat transfer between concentric spheres has also
been studied by many researchers. They concerned

mainly natural convection between concentric spheres,
whose inner and outer parts are both stationary.
Experimental research on natural convection in annuli
between two isothermal concentric spheres has been

described by Bishop et al. [10,11], Scanlan et al. [12]
and Yin et al. [13] for a very wide range of Prandtl
and Rayleigh numbers. Temperature distribution

within the annuli was measured and Nusselt±Grashof
number correlations were presented. Burns and Tien
[14] used both ®nite-di�erence and regular pertur-

bation method for the study of natural convection in
porous media bounded by concentric spheres and hori-
zontal cylinders. Singh and Elliott [15] carried out a

power series solution for a thermally strati®ed medium
between concentric spheres. The inner sphere was kept
either at a constant temperature or constant heat ¯ux,
and the outer sphere was maintained at a variable

temperature for vertical strati®cation. Nelsen and
Douglass [16,17], and Wright and Douglass [18]
analyzed natural convection in a spherical annuli

®lled with a heat-generating ¯uid. These studies
concentrated on a single ¯ow mode resulting from

natural heat convection without considering multiple
solutions.

In this study, a continuation method proposed by
Keller [5] is applied to the Navier±Stokes equations in
order to ®nd possible solution branches for a spherical
Taylor±Couette ¯ow. A test function, which was pro-

posed by Seydel [19], is applied to locate the singular
points. It can reduce computing costs and avoid the
scaling problems in numerics. Moreover, for the heat

transfer between concentric spheres, past studies have
concentrated on the natural convection ¯ow in a
stationary spherical annulus with isothermal walls.

However, for the inner rotating and outer stationary
concentric annulus with a small temperature di�erence,
the ¯ow is driven mainly by the drag of the inner

sphere. Therefore, in the ¯ow, the natural convection
e�ect is much weaker than the viscous e�ect, and can
be neglected in the present study. It would be interest-
ing to investigate the heat transfer associated with the

multiple ¯ow modes. In this study, a bifurcation dia-
gram is constructed and compared with those in the
literature. Finally, the predicted solutions in terms of

temperature distribution and heat transfer between the
spheres for di�erent solution modes are analyzed.

Nomenclature

Cp speci®c heat at constant pressure
el l-th unit vector
k thermal conductivity of the ¯uid [W mÿ1 Kÿ1]
Nui local Nusselt number at inner sphere surface,

de®ned by Eq. (24)
N
-
ui average Nusselt number at inner sphere sur-

face, de®ned by Eq. (25)
Nuo local Nusselt number at outer sphere surface,

de®ned by Eq. (24)

N
-
uo average Nusselt number at outer sphere sur-

face, de®ned by Eq. (25)
Pr Prandtl number, rCpn/k
r radial coordinate

r� dimensionless radial coordinate, r/Ri

Re Reynolds number, oR 2
i /n

Ri radius of inner sphere

Ro radius of outer sphere
s arc length
T temperature

Ti temperature in the inner sphere
To temperature in the outer sphere
u� non-dimensional velocity

u r velocity in the radial coordinate
u y velocity in the meridional coordinate
u f velocity in the azimuthal coordinate
X solution vector, [(c1, x1, f1), . . . (cn, xn, fn)]

Greek symbols
y meridional coordinate
s gap size ratio, normalized by the inner sphere

radius
b shift parameter in the Arnoldi method
g eigenvalue of the de®ned system

e a small disturbance vector
o angular velocity
c stream function

x vorticity function
f angular velocity function
c� non-dimensional stream function
x� non-dimensional vorticity function

f� non-dimensional angular velocity function
a ratio of outer and inner radius, Ro/Ri

l continuation parameter

dl small increment in the continuation parameter
Gi,j test function
Y non-dimensional temperature, (TÿTo)/(TiÿTo)

r ¯uid density
n kinematic viscosity

Subscripts
i inner sphere surface

o outer sphere surface
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2. Governing equations and numerical methods

We consider a ¯ow of steady, incompressible
Newtonian ¯uid contained between two concentric

spheres. The outer sphere is stationary while the inner
one rotates. The inner sphere rotates with angular vel-
ocity o, as shown in Fig. 1. Since axisymmetric ¯ows

are considered, stream function c, vorticity function x,
and angular velocity function f can be introduced as
follows:

ur�r, y� � 1

r sin y
1

r

@

@y
c�r, y� �1�

uy�r, y� � ÿ 1

r sin y
@

@ r
c�r, y� �2�

uf�r, y� � 1

r sin y
f�r, y� �3�

�r � u�f � 1

r

�
@

@r
�ruy� ÿ @

@y
ur

�
� 1

r sin y
x�r, y�: �4�

Let the radius of the inner sphere Ri and angular vel-
ocity o be reference values of radius and angular vel-
ocity, respectively. Then non-dimensional quantities

(denoted by asterisks) can be de®ned via

r � r�Ri, u � u�Rio, c � c�R3
i o,

f � f�R2
i o, x � x�Rio:

�5�

We drop the asterisks in the following sections, and
the Reynolds number can be de®ned as

Re � oR2
i =n �6�

The dimensionless momentum equation in the circum-
ferential direction is

Fig. 1. The coordinate system of the spherical annulus.
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and the streamfunction follows from the Poisson
equation

ÿD2cÿ x � 0 �9�
where the di�erential operator is

D2 � @ 2

@ r2
� 1

r2
@ 2

@y2
ÿ cot y

r2
@

@y
: �10�

a is de®ned as a=Ro/Ri=s+1.

The boundary conditions are `no slip' conditions at
the spheres

f�1, y� � sin2 y, f�a, y� � 0,

c�1, y� � 0, c�a, y� � 0,

x�1, y� � ÿcrr, x�a, y� � ÿcrr, �11�
and the symmetry conditions at the poles are

f�r, 0� � 0, f�r, p� � 0,

c�r, 0� � 0, c�r, p� � 0,

x�r, 0� � 0, x�r, p� � 0: �12�
There are no physical conditions for the vorticity func-
tion at the walls. Hence, Poisson equations are used

x�1, y� � crr�1, y� � 0, x�a, y� � crr�a, y� � 0: �13�
The governing equations are discretized by central

di�erences of second order and form a system of non-
linear algebraic equations

G�X, l� � 0, �14�
where X is the solution vector, and l stands for the
Reynolds number. When l=0 a solution of the con-

tinuous problem can be obtained by numerical
methods. As l deviates from zero, we can use the sol-
ution as an initial estimate of the discrete solution in

the Euler±Newton method applied to the Eq. (14).
This gives a sequence of iterates [X (n )(l )] de®ned by

X �0��l� � initial estimate, �15a�

GX�X �n�, l��X �n�1� ÿ X �n�� � ÿG�X �n�, l�,

n � 0, 1, 2, . . . :
�15b�

Here is the Jacobian matrix of Eq. (14). One way to

obtain good initial estimates is to use a Taylor expan-
sion of the solution with respect to the changes in the
parameter l. Thus we use

X �0��l� dl� � X�l� � dlXl�l�: �16a�

To obtain Xl, we can use Eq. (14) and it satis®es

GX�X, l�Xl � ÿGl�X, l�: �16b�

The method described in Eqs. (15) and (16) is known

as the Euler±Newton continuation. It is extremely
e�ective and usually converges quadratically. However,
it fails in points where the Jacobian matrix GX(X,
l )=0 is singular. To avoid the singular points, the

Keller's [5] continuation method is introduced

N�X�s, l�s��� �< _X�s0��X�s� ÿ X�s0�� >

� _l�s0��l�s� ÿ l�s0�� ÿ �sÿ s0� � 0
�17�

Here [X(s0, l(s0))] is a previously computed solution
for l ®xed in the present discussion and s=s0. X

.
=dX/

ds and _l � dl=ds denote the components of a tangent
vector to the solution path [X(s ), l(s )]. Then, a new

system of equations written as�
G�X, l� � 0
N�X, l, s� � 0

can be solved. The Jacobian of this new system is

@ �G,N �
@ �X, l� �

�
GX Gl

NX Nl

�
: �18�

With the Euler±Newton continuation in s rather than
l, it is possible to follow the solution around singular

points.
The singular points can be located at the place

where the sign of the determinant of the Jacobian
matrix changes. It is necessary to use a lot of computer

memory storage and CPU time to calculate these
singular points which may su�er from scaling problems
in numerics. To reduce computer costs and avoid the

scaling problems, we introduce a test function, Gi,j (X,
l ), proposed by Seydel [19], shown as follows:

Gi, j�X, l� � eT
l

~J�X, l�h �19�

where h satis®es the system

h � ~J
ÿ1
i, j ei, �20�
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and ei is a unit column vector and the matrix JÄi,j a
reduced JÄ by replacing its i-th row by a unit base vec-

tor, i.e. ~Ji, j � b�Iÿ eie
T
i � ~J� eie

T
j c: Eq. (20) guarantees

that the column vector h is a nontrival solution. The
value of Eq. (19), Gi,j (X, l ), approaches zero if GX(X,

l ) approaches singular points. The quantity Gi, j (X, l )
measures the rank-de®ciency and serves as a test func-
tion. Therefore, the singular points can be determined

by monitoring the value of the test function. If the
sign of the test function changes, a ¯ow mode vari-
ation is encountered. However, Gi,j (X, l ) is not singu-

lar at simple turning points. Detecting turning points
is much easier through the sign change of @l/@s.
Regarding the heat transfer prediction, it is assumed

that the inner sphere is kept at a constant temperature

Ti, while the outer sphere is still maintained at T0,
with Ti > T0. Furthermore, it is assumed that (1) ¯uid
properties are constant, and (2) viscous dissipation and

radiation e�ects can be neglected. The temperature
®eld is described by the energy conservation equation
in the spherical coordinates:

ur @Y
@r
� uy

r

@Y
@y
� 1

RePr

�
@ 2Y
@r2
� 2

r

@Y
@r
� cot y

r2

@Y
@y
� 1

r2
@ 2Y

@y2

� �21�

where

Y � Tÿ T0

Ti ÿ T0
, Pr � rCpn

k
: �22�

The boundary conditions are given as follows:

Y�1, y� � 1, Y�a, y� � 0,

@Y�r, 0�
@y

� 0,
@Y�r, p�
@y

� 0: �23�

In this study, Prandtl number=0.72 was used. The

local Nusselt number can be obtained from the gradi-
ent of the temperature at the inner and outer bound-
aries from the following:

Nui � ÿaÿ 1

a

�
@Y
@ r

�
r�1

,

Nuo � ÿa�aÿ 1�
�
@Y
@r

�
r�s
: �24�

The average Nusselt numbers are de®ned as:

�Nui, 0 � ÿ
�p
0

Nui, 0

��
sin y
2

��
dy: �25�

To investigate the stability of various ¯ow states
obtained by the continuation method described above,

a linear stability analysis is carried out. A basic state
Xo found by Newton's method during continuation is
perturbed by small time-dependent quantities,

X � Xo � eegt, �26�

where e is a small disturbance vector. For transient sol-
utions, a set of time-dependent equations can be de-

rived and written as:

M�X �dX
dt
� G�X, l�, �27�

where M(X ) is the mass matrix and it is singular
because some equations, e.g. the stream equations, do
not have an explicit time dependent term. Substituting
Eq. (26) into Eq. (27), after collecting the linear terms

of e, leads to the generalized algebraic eigenvalue
problem:

gM�Xo�e � ~J�Xo�e: �28�

The matrix JÄ represents the Jacobian matrix of G(X,
l ) evaluated for the basic state solution. The stability
of the basic state Xo can be determined by the sign of

the eigenvalue g. The basic solution is in®nitesimally
stable if Re{g } < 0 holds for all eigenvalues g. If there
is at least one eigenvalue with Re{g } > 0, the corre-

sponding eigenmode will grow as t41 and the basic
solution is unstable. However, because M is singular,
some eigenvalues are in®nite and they are not respon-

sible to the linear instability. It is necessary to remove
these in®nite eigenvalues when calculating the leading
eigenvalues. An e�ective algorithm for this purpose is
a shift-and-inverse operation (Arnoldi algorithm; Saad

[20]). The generalized eigenvalue problem Eq. (28) is
transformed into a standard eigenvalue problem

� ~Jÿ bM �ÿ1Me � ĝe, ĝ � 1

gÿ b
, �29�

where b is a complex shift parameter such that
(JÄÿbM )ÿ1M is not singular. ARPACK [21], an
Arnoldi-method based package, is then used to calcu-

late the leading eigenvalues and corresponding eigen-
vectors. Real shift values are found satisfactory in the
present study. The onset of instability in our calcu-

lation, where the leading eigenvalue becomes positive,
is consistent with the bifurcation diagram or the test
function.
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3. Results and discussion

3.1. Comparison with other calculations and experiments

In order to check the dependency of the numerical
solution on grid point distribution, three di�erent

kinds of grid points, 31 � 301, 41 � 301, 41 � 361 in
radial and meridional direction, respectively, are
chosen for the investigation. For s=0.18 and s=0.176

several numerical and experimental investigations are
available in the literature. A comparison of our results
with those of Marcus and Tuckerman [3], Schrauf [4],

Bar-Yoseph et al. [7], Bartels [2] and Wimmer [1] is
listed in Table 1. The present solutions can be regarded
as grid-independent solutions when the 41 � 301 grid
system is used. The computed critical Reynolds num-

bers agree quite well with other results as shown in
Table 1.

3.2. Solution states

Fig. 2 depicts the seven di�erent steady ¯ow modes

predicted for s=0.18 in this study. The ¯ow modes
shown in Fig. 2(a)±(d) have been known in the litera-
ture, namely as 0-vortex, 0-vortex with pinches, 1-vor-
tex and 2-vortex ¯ow, respectively. The other three

¯ow modes are reported here for the ®rst time. For
simplicity, we represent the domain as rectangular,
although it is actually curved. Contours of cr sin y,
which are tangent to the meridional velocity, are
plotted. The solid curves designate counter-clockwise
circulation, and the dashed curves clockwise circu-

lation. In these ¯ows, Ekman pumping caused ¯uid to
be thrown outward centrifugally along the rotating
inner sphere and pulled from the center of the station-

ary outer sphere, causing large-scale meridional ¯ow
whose direction is counter-clockwise in the northern
hemisphere, and clockwise in the southern hemisphere.

This large-scale circulation can be seen in all ¯ows
with non-zero Reynolds numbers.
Similar to Fig. 2(c), Fig. 2(e) contains one pair of

Taylor vortices near the equator. However, its vortex
size is much smaller and its strength is much weaker
than that in Fig. 2(c). Fig. 2(g) is the asymmetric 1-

vortex with a pinch predicted at Re=1000, containing
two Taylor-vortices, one of which is larger and strad-
dles the equator. Furthermore, this ¯ow mode is
characterized by a pinch on only one of the large-scale

recirculations. The asymmetric 2-vortex state shown at
Re = 800 in Fig. 2(f) consists of two pairs of Taylor
vortices, one of which is only slightly larger than the

other pair and straddles the equator as well.

3.3. Heat transfer for di�erent solution states

Fig. 3(a) represents isotherms of the 0-vortex mode
at Re= 514. In this ®gure, constant-temperature con-
tours were nearly parallel to the spherical boundaries.

Therefore, heat was being transferred from the inner
sphere to the outer sphere purely by heat conduction,
and the e�ect of ¯ow convection could be ignored.

Fig. 4(a) shows the local hemispheric Nusselt number
distributions. The solid and dashed lines represent the
local Nusselt numbers for the inner and outer spheres

Table 1

Critical Reynolds numbers for the transition from a ¯ow with m vortex pairs to a ¯ow with n vortex pairs; ±indicates that the data

are not reported

s 04 1 1 4 0 Hysteresis (DRe ) 04 2

Numerical results

This study

(31 � 301) 0.18 650.23 643.6 6.63 745.7/790c

(41 � 301) 0.18 649.13 642.32 6.81 745.1/789c

(41 � 361) 0.18 649.13 642.32 6.81 744.3/788c

Marcus and Tuckerman 0.18 652.11 644.25 7.86 739.84/775c

Schrauf [4] 0.18 659.97 ± ± ±

Schraufa 0.176 ± 652.89 ± 750.01

Schraufb 0.176 666.32 660.87 5.45

Bar-Yoseph [7] 0.176 ± 665 ± ±

0.18 666 ± ± 753

Bartels [2] 0.176 ± 666.5 ± 728±776.5

Experimental results

Wimmer [1] 0.18 649.5±653.4 624.6±653 ± 800±810.6

a Taken from the values listed in Marcus and Tuckerman [3].
b Taken from the values listed in Bar-Yoseph [7].
c The ®rst value is the Reynolds number that the 2-vortex ¯ow starts to appear and the second value is the Reynolds number

where the ¯ow bifurcation is detected.
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(Nui, Nuo), respectively, as de®ned in Eq. (24). At the

poles, cold ¯uid was pulled from the outer sphere to

the inner sphere, and heat transfer from the inner

sphere was at its greatest. Therefore, there was a local

maximum for the Nui distribution. Afterwards, ¯uid

moving down to the equator along the inner sphere

was heated gradually by the hot wall. Meanwhile, the

temperature gradient in the radial direction and Nui
decreased gradually forming a local Nui minimum at

the equator. By contrast, at the equator, where the

outer sphere received heat from the hot radial out¯ow,

heat transfer at the outer sphere was at its greatest,

thereby forming a local maximum of Nuo distribution.

Fluid returning to the poles along the outer sphere was

then cooled gradually by the cold wall. Meanwhile, the

temperature gradient in the radial direction and Nuo
decreased gradually forming local minimal of Nuo at

the poles. From these results, we can conclude that

extremes of Nui and Nuo always exist at where radial

in¯ow and radial out¯ow locate. At radial in¯ow lo-

cations, the extremes of Nui and Nuo are locally maxi-

mal and locally minimal, respectively. On the other

hand, at radial out¯ow locations, the extremes of Nui
and Nuo are locally minimal and locally maximal, re-

spectively. Furthermore, as Fig. 4(a) shows, Nui and

Nuo intersected at y=578, 1238, which nearly corre-

sponds to the centers of the two large-scale cells.

The isotherms for the 0-vortex mode with pinches at

Re = 713 are shown in Fig. 3(b). The isotherms are

almost parallel to the spherical boundaries everywhere,

except at the stagnation points and radial out¯ow lo-

cations. Hence, the ¯ow convection e�ect appeared in

the neighborhood of the equator. Fig. 4(b) shows the

local Nusselt number distributions for this mode. At

the poles, Nui was locally maximal, and decreased

gradually as the ¯uid moved down from the poles

along the inner sphere. As it approached the stag-

nation points, the ¯uid was heated by the hot out¯ow

beside the stagnation points, where heat transfer and

Nui decreased signi®cantly. In the small-scale cells, the

Fig. 2. Seven di�erent steady ¯ow modes predicted for s=0.18 in this study.
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inner spheres su�ered from the direct impact of the

cold ¯uid in the outer sphere at the in¯ow boundaries

beside the stagnation points. Therefore, local Nui maxi-

mal and minimal formed at the out¯ow and in¯ow

boundaries beside the stagnation points. Fluid moving

to the equator along the inner sphere was then heated

again by the hot wall and out¯ow at the equator.

Meanwhile, Nui decreased signi®cantly again forming a

local Nui minimum at the equator. By contrast, at the

equator, the outer sphere su�ered from the impact of

the hot radial out¯ow, and heat transfer was at its

greatest, forming a locally maximal Nuo distribution.

Fluid returning to the stagnation points along the

outer sphere was then cooled by the cold wall, there-

fore, Nuo was locally minimal at the small-scale cell

in¯ow boundaries. In the large-scale cells, the outer

spheres su�ered from the direct impact of the hot ¯uid

in the inner spheres at the out¯ow boundaries beside

the stagnation points forming a locally maximal Nuo.

Fluid returning to the poles was then cooled by the

cold walls, and Nuo decreased gradually. Extremes of

Nui and Nuo also existed at the in¯ow and out¯ow

boundaries in this mode. Fig. 4(b) also shows that Nui
and Nuo intersected at y=638, 1178 which nearly corre-

sponds to the large-scale cell center locations.

Fig. 3(c) shows the isotherms of the 1-vortex mode.

The streamlines distribution of the mode, as presented

in Fig. 2(c), show radial in¯ow formed at the poles

and the equator, and radial out¯ow formed between

the vortices and large-scale cells on either side of the

equator. Furthermore, isotherms twisted outward or

inward at locations corresponding to the radial out¯ow

and in¯ow. Fig. 4(c) shows the local Nusselt number

distributions for this mode. Nui and Nuo distribution

tendencies can thus be determined by these radial

in¯ow and out¯ow characteristics. At the poles and

equator, Nui and Nuo are locally maximal and mini-

mal, respectively. However, at the boundaries between

the vortices and large-scale cells, Nui and Nuo are

locally minimal and maximal, respectively.

Furthermore, Nui and Nuo intersected at y=638, 838
and y=978, 1178, which nearly correspond to the lo-

Fig. 3. Isotherms of di�erent ¯ow modes for s=0.18.
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Fig. 4. (a) Local Nusselt number distribution of zero vortex mode. (b) Local Nusselt number distribution of zero vortex mode with

pinches. (c) Local Nusselt number distribution of one vortex mode. (d) Local Nusselt number distribution of asymmetric one-vor-

tex with a pinch mode. (e) Local Nusselt number distribution of two vortex mode.
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Fig. 4 (continued)
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cations of the large-scale cell centers and vortices on

either side of the equator.
The isotherms and the local Nusselt number distri-

butions for the asymmetric 1-vortex with a pinch mode

at Re= 1178 are shown in Figs. 3(d) and 4(d), respect-
ively. In the equatorial neighborhood, the isotherms
twisted outward and inward at locations corresponding
to the radial in¯ow and out¯ow. Nui and Nuo distri-

bution tendencies can also be determined by the in¯ow
and out¯ow characteristics. Therefore, at the poles,
between the vortices, and at the in¯ow locations beside

the stagnation points, Nui and Nuo are locally maximal
and locally minimal, respectively. However, at the
boundaries between the vortices and the large-scale

cells on either side of the equator, and at the out¯ow
locations beside the stagnation points, Nui and Nuo are
locally minimal and locally maximal, respectively. Figs.
3(d) and 4(d) also show that Nui and Nuo intersected

at y=658, 928, 1038, and 1198, which nearly corre-
spond to the large-scale cell center and vortex lo-
cations.

Figs. 3(e) and 4(e) show isotherms and the local
Nusselt number distributions for the 2-vortex mode at
Re= 906. Isotherm distribution twisted outward or

inward at the locations according to the respective out-
¯ow and in¯ow. Therefore, at the poles, and between
the vortices on both sides of the equator, Nui and Nuo

were locally maximal and locally minimal, respectively.

However, at the equator, and between the large-scale
cells and vortices, Nui and Nuo were locally minimal
and maximal, respectively. Nui and Nuo also inter-

sected at y=638, 838, y=638, 838 and y=638, 838,
which nearly correspond to the large-cell center and
vortex locations.
In Figs. 5(a) and (b), Nusselt number distributions

for stable 1-vortex and 2-vortex are shown at
Re = 1000. In Fig. 5(a), there are two peaks for 1-vor-
tex mode and three peaks for 2-vortex mode, respect-

ively, corresponding to out¯ow boundaries on outer
sphere. Due to re¯ection symmetric to the equator, the
peak values of each mode are identical in northern and

southern hemisphere. However, the peak values of 1-
vortex mode are 25% larger than that of 2-vortex
mode, and the minimum value of 1-vortex mode is still
smaller than that of 2-vortex mode. At Re= 1000, the

1-vortex mode has the highest and lowest temperatures
on outer sphere compared to those of the 2-vortex
mode. On inner sphere, there are two peaks for 2-vor-

tex mode and one peak for 1-vortex mode in Fig. 5(b).
The peak values of 2-vortex mode are just 5% larger
than that of 1-vortex mode, and the minimum value of

1-vortex mode is also smaller than that of 2-vortex
mode. In this case, the highest temperature occurs to
the 1-vortex mode and the lowest temperature occurs

Fig. 4 (continued)

W.-J. Luo, R.-J. Yang / Int. J. Heat Mass Transfer 43 (2000) 885±899 895



Fig. 5. (a) Local Nusselt number distribution of one-vortex and two-vortex modes on outer sphere at Re = 1000. (b) Local Nusselt

number distribution of one-vortex and two-vortex modes on inner sphere at Re= 1000.
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to the 2-vortex mode, respectively. As can be shown
later, the average Nusselt number for the 2-vortex
mode is in general larger than that of the 1-vortex

mode.

3.4. Bifurcation diagram and average heat transfer

A schematic representation of the bifurcation dia-
gram is shown in Fig. 6. The vertical axis of Fig. 6

represents ¯ow states and is not a monotonicÐnor
even a single-valued Ð function of torque. In the sche-
matic bifurcation diagram for Re< 1200, the stable

(solid lines) and unstable (dash lines) branch will be
labeled with the index of + and ÿ, respectively.
Linear stability analysis of the Jacobian matrix deter-

mines the character of the indices. The second index of
the labels indicates whether the branch is symmetric or
asymmetric. Therefore, a symmetric and an asymmetric
branch will be labeled S and A, respectively. The third

numeral index of the labels indicates the number of
Taylor-vortex pairs in the ¯ow. The fourth index p in-
dicates if the ¯ow states possess pinches in its large-

scale recirculation or not.
We can see from Fig. 6 that the basic 0-vortex ¯ow

is stable (+S0) at lower Reynolds numbers.

Continuing the stable solution to higher Reynolds
numbers, a subcritical pitchfork bifurcation point
(PF1) was detected at Re=649. Via this pitchfork bi-

furcation, two solution branches are found, namely, an
unstable 0-vortex ¯ow with pinches (ÿS0P) along the

primary branch and an unstable symmetry-breaking
transition branch (ÿA1) to 1-vortex ¯ow. Along the

(ÿA1) branch, i.e. 04 1 vortex branch, a pitchfork bi-
furcation (PF2) occurs at Re= 648. After this bifur-
cation point, there are two solution branches:

1. Along (ÿS1) branch (left to the PF2), which has
one positive eigenvalue through the linear stability

analysis. This branch will be stabilized via a saddle-
node bifurcation (SN) at Re = 642 to the stable

symmetric 1-vortex ¯ow (+S1),
2. Along (ÿS1) branch (right to the PF2), which has

two positive eigenvalues and is called as twice un-
stable symmetric 1-vortex ¯ow.

We now follow the stable 1-vortex branch (+S1).
With the increase in Reynolds number, the vortex

strength along this solution branch grew stronger
gradually.

We now follow the branch of 0-vortex with pinches
(ÿS0P). With the increase in Re, the ¯ow gradually

became an unstable 2-vortex ¯ow. This unstable 2-vor-
tex ¯ow will undergo another subcritical pitchfork bi-
furcation (PF3) at Re= 789, leading to a new

unstable asymmetric 2-vortex ¯ow (ÿA2). The asym-
metry increases along its branch. However, along the

parent branch, it passes through PF3, changing the
index from ÿS2 to +S2, where the pitchfork bifur-

Fig. 6. Schematic bifurcation diagram.
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cation restabilizes the parent branch. Along each un-
stable asymmetric two-vortex branch, each branch

gradually transforms into another newly found un-

stable asymmetric 1-vortex with a pinch state.

Heat was transferred purely by conduction when the

average Nusselt number (N
-
ui,0 as de®ned in Eq. (25))

was equal to one. When the average Nusselt number

was greater than one, heat was transferred by conduc-

tion and also by ¯ow convection. Fig. 7 show N
-
ui,0 for

di�erent modes at various Reynolds numbers. In
energy conversion between the inner and outer spheres,

N
-
ui must be equal to N

-
uo for the arbitrary solution

mode. Hence, only N
-
ui distribution is represented in

this ®gure.

We can see from Fig. 7 that at lower Reynolds num-

bers there was only stable 0-vortex state (+S0) exist-
ing, and the average Nusselt number was almost equal

to one. Therefore, heat was transferred mainly by pure

conduction in this solution mode. Via the pitchfork bi-
furcation (PF1) at Re = 649, two solution branches

are found, namely, an unstable 0-vortex ¯ow with

pinches (ÿS0P) along the primary branch and an un-

stable symmetry-breaking transition branch (ÿA1) to
1-vortex ¯ow. We now follow the stable 1-vortex

branch (+S1) and the unstable 1-vortex branch (ÿS1).
With the increase in Reynolds number, the vortex

strength and ¯ow convection e�ect along these sol-
ution branches grew stronger, and N

-
ui of both

branches increased gradually. Moreover, the dis-

crepancy of N
-
ui for these two branches was gradually

on the increase with the increase in Re.
We now follow the branch of 0-vortex with pinches

(ÿS0P), where N
-
ui rose slightly. With the increase in

Re, the ¯ow gradually became an unstable 2-vortex
¯ow. The vortex and ¯ow convection e�ects grew
stronger, and N

-
ui rose signi®cantly with the increase in

Re. Moreover, N
-
ui of the two-vortex mode exceeded

that of the one-vortex mode at Re= 801. The intersec-
tion of these two branches was an average Nusselt

number projection, not a bifurcation point. This un-
stable 2-vortex ¯ow will undergo another subcritical
pitchfork bifurcation (PF3) at Re = 789, leading to a

new unstable asymmetric 2-vortex ¯ow (ÿA2). The
asymmetry increases along its branch. N

-
ui distribution

of the asymmetric two-vortex ¯ow almost overlap with
the 2-vortex mode at the range of Re between 789 and

808. Beyond the bifurcation of PF3, the convection
e�ect was weaker along these asymmetric solution
branches than that in the stable 2-vortex mode, but

was close to that of the 1-vortex mode. Therefore, N
-
ui

distributions of the 1-vortex and asymmetric 1-vortex
with a pinch mode nearly parallel each other.

4. Conclusions

This paper investigates the steady ¯ow and heat
transfer between two concentric spheres with the inner

Fig. 7. Average Nusselt number for di�erent modes at various Reynolds numbers.
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one rotating and the outer one stationary for the gap
width of s=0.18. A continuation method has been

developed and applied to ®nd possible solution
branches for Re< 1200. The method also uses a test
function to predict and locate singularities. As demon-

strated in this study, the test function approach can
e�ectively locate singular points. A bifurcation is indi-
cated by a zero quantity of the test function. The test

function is continuous in a su�ciently large interval
for the cases considered in this study. The computed
solutions are carefully checked to be grid-independent.

Our results show reasonably good agreement with
other numerical solutions and experimental data. Past
studies have found the 0-, 1-, and 2-vortex ¯ow modes
at s=0.18. However, besides the three ¯ow modes,

the present study found some more steady state sol-
utions, namely, (1) the unstable asymmetric 2-vortex
state (ÿA2, via a pitchfork bifurcation PF3); (2) the

unstable asymmetric 1-vortex with a pinch state
(ÿA1P, followed the ÿA2), (3) the twice unstable sym-
metric 1-vortex state (ÿS1, via a pitchfork bifurcation

PF2).
For local heat transfer, at the radial in¯ow lo-

cations, Nui is locally maximal and Nuo is locally mini-

mal, while at the radial out¯ow locations, Nui is
locally minimal, and Nuo is locally maximal. Nui and
Nuo intersect nearly at the centers of cells and vortices.
For arbitrary Reynolds numbers between 808 and

1200, multiple solutions for the 1-vortex, 2-vortex,
asymmetric 1-vortex with a pinch modes, and twice un-
stable 1-vortex mode exist simultaneously. Average

heat transfer of the asymmetric 1-vortex with a pinch
state and the 1-vortex state nearly parallel each other.
Average heat transfer in the 2-vortex mode is larger

than that in the 1-vortex mode, and that in the asym-
metric 1-vortex with a pinch mode is smaller than 1-
vortex mode, and that in the twice unstable 1-vortex
mode is the smallest of all.
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